Effects of hypercapnia and hypocapnia on ventilatory variability and the chaotic dynamics of ventilatory flow in humans.

نویسندگان

  • Marie-Noëlle Fiamma
  • Christian Straus
  • Sylvain Thibault
  • Marc Wysocki
  • Pierre Baconnier
  • Thomas Similowski
چکیده

In humans, lung ventilation exhibits breath-to-breath variability and dynamics that are nonlinear, complex, sensitive to initial conditions, unpredictable in the long-term, and chaotic. Hypercapnia, as produced by the inhalation of a CO(2)-enriched gas mixture, stimulates ventilation. Hypocapnia, as produced by mechanical hyperventilation, depresses ventilation in animals and in humans during sleep, but it does not induce apnea in awake humans. This emphasizes the suprapontine influences on ventilatory control. How cortical and subcortical commands interfere thus depend on the prevailing CO(2) levels. However, CO(2) also influences the variability and complexity of ventilation. This study was designed to describe how this occurs and to test the hypothesis that CO(2) chemoreceptors are important determinants of ventilatory dynamics. Spontaneous ventilatory flow was recorded in eight healthy subjects. Breath-by-breath variability was studied through the coefficient of variation of several ventilatory variables. Chaos was assessed with the noise titration method (noise limit) and characterized with numerical indexes [largest Lyapunov exponent (LLE), sensitivity to initial conditions; Kolmogorov-Sinai entropy (KSE), unpredictability; and correlation dimension (CD), irregularity]. In all subjects, under all conditions, a positive noise limit confirmed chaos. Hypercapnia reduced breathing variability, increased LLE (P = 0.0338 vs. normocapnia; P = 0.0018 vs. hypocapnia), increased KSE, and slightly reduced CD. Hypocapnia increased variability, decreased LLE and KSE, and reduced CD. These results suggest that chemoreceptors exert a strong influence on ventilatory variability and complexity. However, complexity persists in the quasi-absence of automatic drive. Ventilatory variability and complexity could be determined by the interaction between the respiratory central pattern generator and suprapontine structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of the corticospinal control of ventilation by changes in reflex respiratory drive.

We have determined whether changes in PCO(2) above and below eucapnia modulate the precision of the voluntary control of breathing. Twelve trained subjects performed a compensatory tracking task in which they had to maintain the position of a cursor (perturbed by a variable triangular forcing function) on a fixed target by breathing in and out of a spirometer (ventilatory tracking; at 10 l/min)...

متن کامل

Increased ventilatory response to carbon dioxide in COPD patients following vitamin C administration

Patients with chronic obstructive pulmonary disease (COPD) have decreased ventilatory and cerebrovascular responses to hypercapnia. Antioxidants increase the ventilatory response to hypercapnia in healthy humans. Cerebral blood flow is an important determinant of carbon dioxide/hydrogen ion concentration at the central chemoreceptors and may be affected by antioxidants. It is unknown whether an...

متن کامل

مقایسه تست‌های عملکرد ریوی در ارتفاع 1150 متر و 4150 متری در افراد سالم جوان

Background: Both hypoxia and hypocapnia can cause broncho-constriction in humans, and this could have a bearing on performance at high altitude. The objective of this study was to examine how pulmonary ventilatory function during high-altitude trekking.Methods: This study was a before and after study on spirometric parameters at Base line (1150 m above sea level), and after ascending at 4150 m ...

متن کامل

Peripheral chemoreflex responsiveness is increased at elevated levels of carbon dioxide after episodic hypoxia in awake humans.

We hypothesized that the acute ventilatory response to hypoxia is enhanced after exposure to episodic hypoxia in awake humans. Eleven subjects completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the partial pressure of carbon dioxide (Pet(CO(2))) below 25 Torr. Subjects...

متن کامل

Hypercapnia and hypocapnia in neonates.

BACKGROUND The arterial partial pressure of carbon dioxide (PaCO2) represents the balance between CO2 production and consumption. Abnormal increase or decrease in PaCO2 can affect the body's internal environment and function. Permissive hypercapnia has aroused more attention as a novel ventilatory therapy. The aim of this study was to elucidate the effects of hypercapnia and hypocapnia on the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007